skip to main content


Search for: All records

Creators/Authors contains: "Feng, Xiaobing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this paper, a higher order time-discretization scheme is proposed, where the iterates approximate the solution of the stochastic semilinear wave equation driven by multiplicative noise with general drift and diffusion. We employ variational method for its error analysis and prove an improved convergence order of $\frac 32$ for the approximates of the solution. The core of the analysis is Hölder continuity in time and moment bounds for the solutions of the continuous and the discrete problem. Computational experiments are also presented. 
    more » « less
    Free, publicly-accessible full text available May 22, 2024
  2. This paper is concerned with fully discrete finite element approximations of a stochastic nonlinear Schrödinger (sNLS) equation with linear multiplicative noise of the Stratonovich type. The goal of studying the sNLS equation is to understand the role played by the noises for a possible delay or prevention of the collapsing and/or blow-up of the solution to the sNLS equation. In the paper we first carry out a detailed analysis of the properties of the solution which lays down a theoretical foundation and guidance for numerical analysis, we then present a family of three-parameters fully discrete finite element methods which differ mainly in their time discretizations and contains many well-known schemes (such as the explicit and implicit Euler schemes and the Crank-Nicolson scheme) with different combinations of time discetization strategies. The prototypical \begin{document}$ \theta $\end{document}-schemes are analyzed in detail and various stability properties are established for its numerical solution. An extensive numerical study and performance comparison are also presented for the proposed fully discrete finite element schemes.

     
    more » « less
  3. null (Ed.)
    This paper presents a self-contained new theory of weak fractional differential calculus in one-dimension. The crux of this new theory is the introduction of a weak fractional derivative notion which is a natural generalization of integer order weak derivatives; it also helps to unify multiple existing fractional derivative definitions and characterize what functions are fractionally differentiable. Various calculus rules including a fundamental theorem calculus, product and chain rules, and integration by parts formulas are established for weak fractional derivatives. Additionally, relationships with classical fractional derivatives and detailed characterizations of weakly fractional differentiable functions are also established. Furthermore, the notion of weak fractional derivatives is also systematically extended to general distributions instead of only to some special distributions. This new theory lays down a solid theoretical foundation for systematically and rigorously developing new theories of fractional Sobolev spaces, fractional calculus of variations, and fractional PDEs as well as their numerical solutions in subsequent works. 
    more » « less